Рассмотрите некоторую теорему и разложить ее на части.

Shtager1501 Shtager1501    3   28.10.2020 13:52    14

Ответы
Studennmb1 Studennmb1  28.10.2020 14:00

Основная теорема арифметики утверждает[1][2]:

Каждое натуральное число {\displaystyle n>1}n>1 можно представить в виде {\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}{\displaystyle n=p_{1}\cdot \ldots \cdot p_{k}}, где {\displaystyle p_{1},\ldots ,p_{k}}{\displaystyle p_{1},\ldots ,p_{k}} — простые числа, причём такое представление единственно, если не учитывать порядок следования множителей.

Если формально условиться, что произведение пустого множества чисел равно 1, то условие {\displaystyle n>1}n>1 в формулировке можно опустить, тогда для единицы подразумевается разложение на пустое множество простых: {\displaystyle 1=1}{\displaystyle 1=1}[3][4].

Как следствие, каждое натуральное число {\displaystyle n}n единственным образом представимо в виде

{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},}{\displaystyle n=p_{1}^{d_{1}}\cdot p_{2}^{d_{2}}\cdot \ldots \cdot p_{k}^{d_{k}},} где {\displaystyle p_{1}<p_{2}<\ldots <p_{k}}{\displaystyle p_{1}<p_{2}<\ldots <p_{k}} — простые числа, и {\displaystyle d_{1},\ldots ,d_{k}}{\displaystyle d_{1},\ldots ,d_{k}} — некоторые натуральные числа.

Такое представление числа {\displaystyle n}n называется его каноническим разложением на простые сомножители.

Пошаговое объяснение:

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика