Прямая ol, не перпендикулярная оси oz, равномерно вращается вокруг оси с постоянной угловой скоростью ω. точка м движется по прямой ol со скоростью, пропорциональной расстоянию ом подвижной точки до точки о. написать параметрические уравнения траектории точки м. (траектория называется конической спиралью)

AnnKulibyakina AnnKulibyakina    2   03.09.2019 06:40    9

Ответы
polilaibe polilaibe  06.10.2020 14:07
В неподвижной системе координат расстояние до точки O изменяется в соответствии с дифференциальным уравнением:
r'(t) = r(t) / τ (неизвестный коэффициент пропорциональности здесь 1/τ)

Уравнение с разделяющимися переменными, решаем:
dr / r = dt / τ
r = r(0) exp(t / τ)

Переходим от r к (x, y, z):
x(t) = x(0) exp(t / τ)
y(t) = y(0) exp(t / τ)
z(t) = z(0) exp(t / τ)

В вращающейся системе координат z остаётся такой же, а x и y периодически изменяются:
x(t) -> x(t) cos(ωt + φ)
y(t) -> y(t) sin(ωt + φ)

В итоге получаем такие параметрические уравнения:
x(t) = x(0) cos(ωt + φ) exp(t / τ)
y(t) = y(0) sin(ωt + φ) exp(t / τ)
z(t) = z(0) exp(t / τ)

Если выбрать в качестве параметра угол θ, на который повернулась прямая, то будет немного по-другому:
x(θ) = a cos θ exp(θ/Φ)
y(θ) = a sin θ exp(θ/Φ)
z(θ) = b exp(θ/Φ)
(Φ = ωτ)
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика