Бесконечно малая — числовая функция или последовательность, стремящаяся к (предел которой равен) нулю.
Бесконечно большая — числовая функция или последовательность, стремящаяся к (предел которой равен) бесконечности определённого знака.
В нестандартном анализе бесконечно малые и бесконечно большие определяются не как последовательности и не как переменные величины, а как особый вид чисел.
Что же такое ноль? Это пустота, это ничего, но как не прискорбно признавать, это утверждение верно только на половину. Ноль это не только пустота, ноль это бесконечность. Почему я решил поставить между нулем и бесконечностью знак равенства? Попробую объяснить, при деление любого числа на ноль n/0 (n-произвольное число) обычно люди говорят два ответа. Либо "на ноль дель нельзя", либо "Бесконечность" . С первым ответом все понятно, но что делать со вторым? Почему при деление на ноль получается бесконечность? Если рассмотреть картинку поста, то можно заметить функцию и её график (у)=1/x. Мы видим как меняется значение (у), если (х) стремится к +∞(∞-бесконечность), то (у) стремится к 0 и наоборот чем меньше (х) тем больше (у), то есть если (х) стремится к 0, то (у) стремится к +∞. Но мы забываем про отрицательные числа и отрицательную бесконечность -∞. на отрицательной стороне координат мы видим такую же ситуацию правда направленную в противоположную сторону, при(х) стремящимся к -∞ (у) стремится к 0, при (у) стремящемся к -∞ (х) стремится к 0, но здесь и появляется парадокс деления на 0. То есть У=1/X при Х=0 У=+∞, У=-∞. Но у нас два ответа, какой же нам выбрать? В такой ситуации можно найти среднею арифметическую, то есть (+∞+(-∞))/2=0/2=0. То есть ∞=0? Под ∞ я беру всю прямую от -∞ до +∞. P.S. В следующем посте попытаюсь объяснить, почему 0=n (n-произвольное число).
Бесконечно малая — числовая функция или последовательность, стремящаяся к (предел которой равен) нулю.
Бесконечно большая — числовая функция или последовательность, стремящаяся к (предел которой равен) бесконечности определённого знака.
В нестандартном анализе бесконечно малые и бесконечно большие определяются не как последовательности и не как переменные величины, а как особый вид чисел.
Почему я решил поставить между нулем и бесконечностью знак равенства? Попробую объяснить, при деление любого числа на ноль n/0 (n-произвольное число) обычно люди говорят два ответа. Либо "на ноль дель нельзя", либо "Бесконечность" . С первым ответом все понятно, но что делать со вторым? Почему при деление на ноль получается бесконечность?
Если рассмотреть картинку поста, то можно заметить функцию и её график (у)=1/x. Мы видим как меняется значение (у), если (х) стремится к +∞(∞-бесконечность), то (у) стремится к 0 и наоборот чем меньше (х) тем больше (у), то есть если (х) стремится к 0, то (у) стремится к +∞. Но мы забываем про отрицательные числа и отрицательную бесконечность -∞. на отрицательной стороне координат мы видим такую же ситуацию правда направленную в противоположную сторону, при(х) стремящимся к -∞ (у) стремится к 0, при (у) стремящемся к -∞ (х) стремится к 0, но здесь и появляется парадокс деления на 0. То есть
У=1/X при Х=0 У=+∞, У=-∞.
Но у нас два ответа, какой же нам выбрать? В такой ситуации можно найти среднею арифметическую, то есть
(+∞+(-∞))/2=0/2=0.
То есть
∞=0?
Под ∞ я беру всю прямую от -∞ до +∞.
P.S. В следующем посте попытаюсь объяснить, почему 0=n (n-произвольное число).