Постройте график функции y = sin x на промежутке [-п/2; 3п/2]​

castafirs castafirs    2   23.10.2019 08:39    96

Ответы
Катя20030000 Катя20030000  27.12.2023 08:46
Хорошо, давайте посмотрим, как построить график функции y = sin x на данном промежутке [-п/2; 3п/2].

Шаг 1: Определение основных точек и значений функции:
В данном случае функция sin x изменяется от -1 до 1. Поэтому, нам понадобятся основные точки, в которых значение функции равно -1, 0 и 1. Воспользуемся знаниями тригонометрии:

sin(0) = 0
sin(п/6) = 1/2
sin(п/4) = √2/2
sin(п/3) = √3/2
sin(п/2) = 1

Отметим данные точки на графике.

Шаг 2: Определение поведения функции:
Функция y = sin x имеет период 2п (так же известный, как период синусоиды). Максимальное значение функции достигается при x = п/2, а минимальное значение - при x = 3п/2. Мы видим, что данные точки входят в указанный промежуток [-п/2; 3п/2].

Шаг 3: Построение графика:
У нас есть все необходимые данные, чтобы построить график функции y = sin x на промежутке [-п/2; 3п/2].

Отметьте на оси абсцисс (горизонтальной оси) значения -п/2, 0, п/2, п, 3п/2 - это точки, где функция изменяет свое значение.

Теперь соедините эти точки гладкой кривой. Повторяя паттерн, получившийся между -п/2 и 3п/2, построим копии функции вне этого промежутка.

Готово! Вы построили график функции y = sin x на промежутке [-п/2; 3п/2].

Если у вас есть еще вопросы, пожалуйста, задавайте!
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика