По данным групповой выборки случайной величины Х, найти интервальные оценки математического ожидания и Диспрессии с надёжностью 0.95. n1 = 2; n2 = 4; n3 = 8; n4 = 13; n5 = 9; n6 = 6; n7 = 3;

Красавиая123456 Красавиая123456    3   21.08.2020 16:16    5

Ответы
рощумникиви рощумникиви  15.10.2020 16:08

Пошаговое объяснение:

Представим ряд в порядке возрастания случайной величины:

2; 3; 4; 6; 8; 9; 13

Находим выборочную среднюю:

Xcp = 2 + (0+1+2+4+6+7+11)/7 ≈  6,4

Находим выборочную дисперсию:

Dв=[(2-6,4)²+(3-6,4)²+(4-6,4)²+(6-6,4)²+(8-6,4)²+(9-6,4)²+(13-6,4)²]/7 ≈12,8

γ = 0,95

n = 7

σ = √ Dв = √12,8 ≈ 3,58

Для γ = 0,95  

t = 1,96

Находим:

Δ = t·σ / √n = 1,96·3,58/√7 ≈ 2,7

Интервал:

Xcp ±Δ = 6,4 ± 2,7

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика

Популярные вопросы