Плоскость боковой грани правильной боковой пирамиды образует с плоскостью основания угол 30°. радиус окружности, описанной около основания равен 12 дм. найдите площадь боковой поверхности пирамиды.

ALEXFORBIDDEN ALEXFORBIDDEN    3   21.06.2019 15:10    1

Ответы
MmVl MmVl  17.07.2020 06:49
Пирамида ABCK где ABCоснование
SБок=Pосн*h/2
радиус описанной окружности  r=a/√3  отсюда а = r*√3=12√3дм кстати он же отрезок ОС=ОА=ОВ и прилежащий катет в треугольнике KOC
Pосн=3*а=3*12√3=36√3
h-противолежащий катет треугольника КОС с углом КСО=30град по условию
h=ОС*tg30=r*1/√3=12/√3=12√3/3=4√3
Sбок=36√3*  4√3/  2  = 216
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика