Площадь треугольника равна s.найдите : а)длину вписанной окружности б)длину дуги,заключенной между двумя соседними точками касания в)площадь части треугольника,лежащей вне вписанной окружности хоть какую то букву сделать(особенно в)
Сторона квадрата равна sqrt(S). А) Радиус вписанной окружности квадрата равен R=a/2 = sqrt(S)/2. Длина окружности равна: С=2piR = 2pisqrt(S)=pi sqrt(S). Б) Длина дуги равна R alpha, где alpha - угол в радианах, стягивающий эту дугу, здесь он равен 90 градусам, так как касание происходит в серединах сторон квадрата, а центр вписанной окружности совпадает с центром квадрата (точкой пересечения средних линий или диагоналей квадрата) . Поэтому L=sqrt(S)/2 * pi/2 =sqrt(S) * pi/4. В) Ищем разность площадей квадрата и его вписанной круга: площадь квадрата равна S; площадь вписанного круга равна: piR^2=pi * (sqrt(S)/2)^2 = piS/4. Sвнешн=S - piS/4=S(4-pi)/4.
А) Радиус вписанной окружности квадрата равен R=a/2 = sqrt(S)/2. Длина окружности равна: С=2piR = 2pisqrt(S)=pi sqrt(S).
Б) Длина дуги равна R alpha, где alpha - угол в радианах, стягивающий эту дугу, здесь он равен 90 градусам, так как касание происходит в серединах сторон квадрата, а центр вписанной окружности совпадает с центром квадрата (точкой пересечения средних линий или диагоналей квадрата) . Поэтому L=sqrt(S)/2 * pi/2 =sqrt(S) * pi/4.
В) Ищем разность площадей квадрата и его вписанной круга:
площадь квадрата равна S;
площадь вписанного круга равна: piR^2=pi * (sqrt(S)/2)^2 = piS/4.
Sвнешн=S - piS/4=S(4-pi)/4.