Периметр прямоугольника равен 18 дм.

длина прямоугольника равна 7,2 дм.

найди отношение длины данного прямоугольника к его ширине:

отношение, обратное полученному:

SteveDog86 SteveDog86    3   02.12.2019 12:47    42

Ответы
1amon1 1amon1  10.10.2020 17:51
18-(7,2*2) = 3,6; 3,6:2=1,8; 7,2/1,8 = 4
ПОКАЗАТЬ ОТВЕТЫ
hetag15 hetag15  10.10.2020 17:51

Пошаговое объяснение:

18=(7,2+b)*2

18:2=7,2+b

9-7.2=b

1.8 =b

7.2:1.8=72/10*10/18=72/18=4

ПОКАЗАТЬ ОТВЕТЫ
сердечко141 сердечко141  25.01.2024 19:00
Для того чтобы решить задачу, мы должны знать определение периметра и применить его к данному прямоугольнику.

Периметр прямоугольника - это сумма длин его сторон. В данном случае у нас есть информация о периметре и длине одной из сторон, поэтому мы можем найти вторую сторону прямоугольника.

Для начала, давайте обозначим длину прямоугольника за "l", а его ширину за "w".

Из условия задачи мы знаем, что периметр прямоугольника равен 18 дм. Запишем это в виде уравнения:

2l + 2w = 18

Также по условию задачи мы знаем, что длина прямоугольника равна 7,2 дм. Запишем это в виде уравнения:

l = 7,2

Теперь мы можем подставить значение "l" в уравнение для периметра:

2(7,2) + 2w = 18

Упростим это выражение:

14,4 + 2w = 18

Вычтем 14,4 из обеих частей уравнения:

2w = 18 - 14,4

2w = 3,6

Теперь разделим обе части уравнения на 2, чтобы найти значение ширины "w":

w = 3,6 / 2

w = 1,8

Итак, мы нашли значение ширины прямоугольника - 1,8 дм.

Теперь, чтобы найти отношение длины данного прямоугольника к его ширине, мы делим значение длины на значение ширины:

l/w = 7,2/1,8 = 4

Отношение длины прямоугольника к его ширине равно 4.

Наконец, чтобы найти отношение, обратное полученному, мы делим 1 на это отношение:

1/(l/w) = 1/4 = 0,25

Отношение, обратное данному, равно 0,25.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика