(a+b)/2 : √(ab) = 25 : 24
(a+b)/√(ab) = 25/12
Пусть a = kb, k < 1.
(kb+b)/√(kb·b) = 25/12
(k+1)/√k = 25/12
12k + 12 = 25√k
12k - 25√k + 12 = 0
Замена: √k = t, 0 ≤ t < 1
12t² - 25t + 12 = 0
D = 625 - 576 = 49
t = (25 (+/-) 7)/24
(t ∈ {3/4; 4/3}) ∩ (0 ≤ t < 1)
t = 3/4
k = √3/2
ответ: √3 : 2.
(a+b)/2 : √(ab) = 25 : 24
(a+b)/√(ab) = 25/12
Пусть a = kb, k < 1.
(kb+b)/√(kb·b) = 25/12
(k+1)/√k = 25/12
12k + 12 = 25√k
12k - 25√k + 12 = 0
Замена: √k = t, 0 ≤ t < 1
12t² - 25t + 12 = 0
D = 625 - 576 = 49
t = (25 (+/-) 7)/24
(t ∈ {3/4; 4/3}) ∩ (0 ≤ t < 1)
t = 3/4
k = √3/2
ответ: √3 : 2.