Давайте посмотрим на каждое равенство по отдельности:
1) sin40°=sin(−40°)
Это тождество является верным, поскольку sine является нечетной функцией, и поэтому sin(x) = -sin(-x).
2) cos2β=cos2β−sin2β
Это равенство не является тождеством. По формуле сложения для cos строка должна выглядеть как cos^2(β) - sin^2(β).
3) sin(α+β)=sinα+sinβ
Это равенство не является тождеством. По формуле сложения для sin строка должна выглядеть как sin(α)cos(β) + cos(α)sin(β).
4) cos(α−β)=cosα−cosβ
Это тождество является верным, поскольку cos является четной функцией, и поэтому cos(x) = cos(-x).
5) cos(−50°)=−cos50°
Это тождество является верным, поскольку cos является четной функцией, и поэтому cos(x) = cos(-x).
6) sin2(2α)+cos2(2α)=2
Это тождество является верным, поскольку sin^2(x) + cos^2(x) = 1.
7) sin(4α)=4⋅sinα⋅cosα
Это равенство не является тождеством. Правильное равенство будет sin(4α)=2⋅sin(2α)⋅cos(2α).
8) sin40°=cos50°
Это равенство не является тождеством. Во-первых, sine и cosine отличаются друг от друга. Кроме того, значения sin40° и cos50° также разные и нельзя заменить одно на другое.
Таким образом, единственными тождествами в данном списке являются:
- sin40°=sin(-40°)
- cos(α-β)=cosα—cosβ
- cos(-50°)=-cos50°
- sin2(2α)+cos2(2α)=2
1) sin40°=sin(−40°)
Это тождество является верным, поскольку sine является нечетной функцией, и поэтому sin(x) = -sin(-x).
2) cos2β=cos2β−sin2β
Это равенство не является тождеством. По формуле сложения для cos строка должна выглядеть как cos^2(β) - sin^2(β).
3) sin(α+β)=sinα+sinβ
Это равенство не является тождеством. По формуле сложения для sin строка должна выглядеть как sin(α)cos(β) + cos(α)sin(β).
4) cos(α−β)=cosα−cosβ
Это тождество является верным, поскольку cos является четной функцией, и поэтому cos(x) = cos(-x).
5) cos(−50°)=−cos50°
Это тождество является верным, поскольку cos является четной функцией, и поэтому cos(x) = cos(-x).
6) sin2(2α)+cos2(2α)=2
Это тождество является верным, поскольку sin^2(x) + cos^2(x) = 1.
7) sin(4α)=4⋅sinα⋅cosα
Это равенство не является тождеством. Правильное равенство будет sin(4α)=2⋅sin(2α)⋅cos(2α).
8) sin40°=cos50°
Это равенство не является тождеством. Во-первых, sine и cosine отличаются друг от друга. Кроме того, значения sin40° и cos50° также разные и нельзя заменить одно на другое.
Таким образом, единственными тождествами в данном списке являются:
- sin40°=sin(-40°)
- cos(α-β)=cosα—cosβ
- cos(-50°)=-cos50°
- sin2(2α)+cos2(2α)=2