Основание прямой призмы является прямоугольник, длина одной из сторон которого 15 см. высота призмы равно 25 см. длина диагонали призмы равно 60 см. найдите площадь полной поверхности и объем призмы.
Рассмотрим треугольник, образованный катетом, диагональю грани, содержащей этот катет боковым ребром призмы. призма прямая, значит боковое ребро является высотой призмы по теореме Пифагора Н=√10²-5²=5*√3 V=1/3S*H - формула объема призмы, подставляем известные величины V , H Находим S = (3*125*√3)/(25*√3)=15 площадь прямоугольного треугольника равна половине произведения его катетов, находим второй катет b=30/5=6 по теор Пифагора находим гипотенузу основания с=√5²+6²=√61 радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. R=1/2√61 . возможно так..
призма прямая, значит боковое ребро является высотой призмы
по теореме Пифагора Н=√10²-5²=5*√3
V=1/3S*H - формула объема призмы, подставляем известные величины V , H Находим S = (3*125*√3)/(25*√3)=15
площадь прямоугольного треугольника равна половине произведения его катетов, находим второй катет b=30/5=6
по теор Пифагора находим гипотенузу основания с=√5²+6²=√61
радиус окружности, описанной около прямоугольного треугольника, равен половине гипотенузы. R=1/2√61 . возможно так..