Основание прямой призмы abcda1b1c1d1 представляет собой ромб длиной 8 см. и широкий угол b составляет 120 °. угол между плоскостями adc и bdc1 составляет 60 °. рассчитайте объем призмы!

нурик051 нурик051    3   08.10.2019 11:10    0

Ответы
vcurakina vcurakina  10.10.2020 04:02

AA1⊥(ABC) это условие. Диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам. BO=OD. Значит CO и C1O высоты треугольников DCB и DBC1 соответственно, высоты они потому, что треугольники равнобедренные(мы работаем в призме и основание ромб), а значит  медианы это и высоты. Из условия и определения угла между плоскостью угол между этими прямыми 60°. Чтобы найти площадь призмы надо площадь основания умножить на ребро призмы, найдём это ребро, посчитаем всё остальное.

AC^2=AB^2+BC^2-2AB*BC*cos120а=128-128*(-sin30а)=128+64=192\\AC=\sqrt{64*3}=8\sqrt{3}\\OC=AC/2=4\sqrt{3}\\CC_1=CO*tg60а=4\sqrt{3}*\sqrt{3}=12\\S_{ABCD}=AB*BC*sin120а=64*cos30а=32\sqrt{3}\\V_{ABCDA_1B_1C_1D_1}=S_{ABCD}*CC_1=32\sqrt{3}*12=384\sqrt{3}

ответ: 384√3 см³.


Основание прямой призмы abcda1b1c1d1 представляет собой ромб длиной 8 см. и широкий угол b составляе
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика