Осевое сечение цилиндра -квадрат, диагональ которого 4 см найдите площадь поверхности цилиндра

Timpo Timpo    1   01.07.2019 01:30    0

Ответы
nasty2004b nasty2004b  24.07.2020 13:45
Так как сечение - квадрат то по теореме Пифагора найдем высоту цилиндра:
h^{2} + h^{2}= 4^{2} \\ 2 h^{2}=16 \\ h^{2}=8 \\ h= \sqrt{8}=2 \sqrt{2}
Так как сечение - квадрат, то высота цилиндра равна диаметру основания:
d=h=2 \sqrt{2}, тогда R= \frac{d}{2}= \frac{2 \sqrt{2} }{2}= \sqrt{2}

Подставим найденные значения в формулу боковой поверхности цилиндра:
S_{b}=2 \pi Rh=2 \pi \sqrt{2}*2* \sqrt{2}=8 \pi кв.ед
ПОКАЗАТЬ ОТВЕТЫ
Saoneck Saoneck  24.07.2020 13:45
Если речь о полной поверхности ,то
полная площадь поверхности круглого цилиндра S=2pi*R*(h+R)
R=D/2=(1/2)*d*sin45=(1/2)*4*sin45=sqrt2; h=d*sin45=4*(1/2)*sqrt2=2sqrt2
S=2pi*sqrt2(2sqrt2+sqrt2)=12 pi
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика