Определите уравнение касательной к графику функции y=4-x^2, проведённой в точке пересечения этого графика с положительным направлением оси абсцисс. !

ImperatorrPhysics ImperatorrPhysics    2   23.08.2019 19:40    0

Ответы
Hikary134 Hikary134  05.10.2020 15:10
В точке х0=2 ветвь графика пересекает ось Ох.
Общий вид уравнения касательной:
f(x)=f'(x)*(x-x0)+f(x0)
найдем значение функции в х0=2
f(2)=4-2²=0
найдем производную f'(x):
f'(x)=-2x
производная в точке х0=2:
f'(2)=-2*2=-4
Вставим полученные значения в общее уравнение касательной:
f(x)=-4*(x-2)+0=8-4x
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика