Пусть k-частное от деления (5n-1)/p t- частное от деления (n-10)/p Тогда 5n-1=p*k n-10=p*t | умножим на 5 и вычтем из первого уравнения 5n-1 -5n+50=p*k-5p*t 49=p(k-5t) Из этого уравнения следует, что р=7 Нужно доказать, что 2000n+13 делится на 7. Подбираем такое n, при котором 5n-3 b n-10 делятся на 7. Это число 3. При n=3 6013:7=859
t- частное от деления (n-10)/p
Тогда 5n-1=p*k
n-10=p*t | умножим на 5 и вычтем из первого уравнения
5n-1 -5n+50=p*k-5p*t
49=p(k-5t)
Из этого уравнения следует, что р=7
Нужно доказать, что 2000n+13 делится на 7.
Подбираем такое n, при котором 5n-3 b n-10 делятся на 7. Это число 3.
При n=3 6013:7=859