Ищем точки пересечения графиков:
4-x^2=2+x
-x^2-x+2=0
По т. Виета x₁=-2, x₂=1
\displaystyle \int^1_{-2} (4-x^2)dx-\int^1_{-2} (x+2)dx=4x- \frac{x^3}{3}\bigg|^1_{-2}- \frac{x^2}{2}+2x\bigg|^1_{-2}=
\displaystyle =4- \frac{1}{3}-(-8+ \frac{8}{3})-( \frac{1}{2}+2-2-4)=4+8-3-4,5=4,5
Ищем точки пересечения графиков:
4-x^2=2+x
-x^2-x+2=0
По т. Виета x₁=-2, x₂=1
\displaystyle \int^1_{-2} (4-x^2)dx-\int^1_{-2} (x+2)dx=4x- \frac{x^3}{3}\bigg|^1_{-2}- \frac{x^2}{2}+2x\bigg|^1_{-2}=
\displaystyle =4- \frac{1}{3}-(-8+ \frac{8}{3})-( \frac{1}{2}+2-2-4)=4+8-3-4,5=4,5