Не осталось больше надежды найти человека подробно решить эту . исследовать функцию с производной и построить ее график : y = x4 -4x + 4

Вероникалобова Вероникалобова    1   10.09.2019 01:40    0

Ответы
wasdas390wasdas390 wasdas390wasdas390  07.10.2020 04:20
Производная функции f(x)=4x^3-6x^2 равна:
f '(x) = 12x² - 12x.

Исследовать функцию f (x) = 4x³–6x² и построить ее график.

1. Область определения функции - вся числовая ось.

2. Функция f (x) = 4x³–6x² непрерывна на всей области определения. Точек разрыва нет.

3. Четность, нечетность, периодичность:

График четной функции симметричен относительно оси ОУ, а нечетной — относительно начала координат О.

 f(–x) = 4(–x)³–6(–x)² = –(4x³+6x²) ≠ –f(x),

f(–x) = 4(–x)³3–6(–x)² = –(4x³+6x²) ≠ –f(x)

Функция не является ни четной, ни нечетной. Функция непериодическая.

4. Точки пересечения с осями координат:

Ox: y=0, 4x³–6x²=0, 2x²(2x–3)=0 ⇒ x=0, x=3/2. Значит (0;3/2),  - точки пересечения с осью Ox.

 Oy: x = 0 ⇒ y = 0. Значит (0;0) - точка пересечения с осью Oy.

5. Промежутки монотонности и точки экстремума:

y'=0 ⇒ 12x²–12x =0 ⇒ 12x(x–1) = 0 ⇒ x = 0, x = 1 - критические точки.

Если производная положительна - функция возрастает, если производная отрицательна - функция убывает:

отрезок  -∞ < x < 0   функция возрастает,

отрезок 0 < x < 3/2   функция убывает,

отрезок 3/2 < X < ∞   функция возрастает.

7*. Вычисление второй производной: у =4x³–6x², 

f '(x) = 12x² - 12x. f ''(x) = 24x - 12.

y''=0, 24x–12= 0, x = 12/24 = 1/2.

 8*. Промежутки выпуклости и точки перегиба:

отрезок  -∞ < x < 1/2  график функции выпуклый вверх,

точка перегиба х = 1/2,

отрезок 1/2< x < ∞  график функции выпуклый вниз.

9. Найдем значение функции в дополнительной точке: f(1/2) = 4*(1/2)³– 6(1/2)² = 4/8 -6/4 = (4-12) / 8 = -8/8 =  –1.

10. Искомый график функции в приложении

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика