Найти точку максимума функции

katekotloveka katekotloveka    3   14.07.2019 12:40    0

Ответы
Tamilla19 Tamilla19  20.09.2020 15:22

ответ: x=-3.

Пошаговое объяснение:

Данная функция определена и непрерывна на всей числовой оси. Находим её производную: y'=2*(x+3)*(x-2)+(x+3)²=3*x²+8*x-3. Приравнивая её к нулю, получаем квадратное уравнение 3*x²+8*x-3=0, которое имеет решения x1=1/3 и x2=-3. Значит, функция имеет две критические точки: x1=1/3 и x2=-3. Если x<3, то y'>0, поэтому на интервале (-∞;-3) функция возрастает. Если -3<x<1/3, то y'<0, так что на интервале (-3;1/3) функция убывает. Наконец, если x>1/3, то y'>0, поэтому на интервале (1/3;∞) функция возрастает. Значит, точка x=-3 является точкой максимума, а точка x=1/3 - точкой минимума.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика