Найти точки перегиба кривой: f(x)=x^3-3x^2+6

svetlana2017711 svetlana2017711    3   25.08.2019 02:30    1

Ответы
ivankamartynyk ivankamartynyk  05.10.2020 17:52
Находим производную функции f(x) = x³-3x²+6.
f'(x) = 3x² - 6x.
Вторая производная равна: f''(x) = 6x-6 = 6(x-1).
Если приравняем её нулю, то получим 6(х-1) = 0.
Отсюда х = 1 это точка перегиба графика заданной функции.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика