y = sinx·cosx·ctgx·x
Поскольку sinx·ctgx = cosx, то иммем:
y = cosx·cosx·x = cos²x·x
y' = (cos²x·x)' = (cos²x)'·x + cos²x·(x)' = 2cosx·(-sinx)·x + cos²x = -2x·sin(2x) + cos²x
y = sinx·cosx·ctgx·x
Поскольку sinx·ctgx = cosx, то иммем:
y = cosx·cosx·x = cos²x·x
y' = (cos²x·x)' = (cos²x)'·x + cos²x·(x)' = 2cosx·(-sinx)·x + cos²x = -2x·sin(2x) + cos²x