Найти площадь, ограниченную линиями y^2=2x+1, x-y-1=0 решение с интегралов.

nigar26 nigar26    1   12.05.2019 12:16    0

Ответы
SonicAndDash SonicAndDash  09.06.2020 21:55

Пошаговое объяснение:

y²=2x+1     2x=y²-1  |÷2       x=(y²-1)/2

x-y-1=0      x=y+1     ⇒

(y²-1)/2=y+1  |×2

y²-1=2y+2

y²-2y-3=0    D=16    √D=4

y₁=-1        y₂=3   ⇒

S=₋₁∫³(y+1-(y²-1)/2)dy=₋₁∫³((2y+2-y²+1)/2)dy=(-1/2)*₋₁∫³(y²-2y-3)dy=

(-1/2)*(y³/3-y²-3y)  ₋₁|³=(-1/2)*(3³/3-3²-3*3-((-1)³/3-(-1)²-3*(-1))=

=(-1/2)*(9-9-9+1/3+1-3)=(-1/2)*(-10²/₃)=(-1/2)*(-32/3)=16/3=5¹/₃=5,33.

ответ: S=5,33 кв. ед.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика