Найти площадь фигуры, ограниченной графиком функции y=x^4 и прямыми y=0; x=2

g8trouble g8trouble    1   21.07.2019 16:20    1

Ответы
ilyator ilyator  23.09.2020 10:07
Площадь под графиком между вертикальными прямыми вычисляется интегрированием от левого предела (меньшее значение вертикальной прямой) до правого предела (большее значение вертикальной прямой).

S = \int\limits_0^2 { x^4 } \, dx \ ;

Произодная от интеграла всегда равна самой функции,
так что легко убедиться, что:

\int { x^4 } \, dx = \frac{x^5}{5} + C \ \ \ ,     поскольку     ( \frac{x^5}{5} + C )'_x = x^4 \ ,

S = \int\limits_0^2 { x^4 } \, dx \ = \frac{x^5}{5} |_0^2 = \frac{2^5}{5} - \frac{0^5}{5} = \frac{32}{5} = 6.4 .
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика