Найти определённый интеграл ​

shuratimoschin shuratimoschin    3   05.10.2019 20:46    0

Ответы
tyomking tyomking  09.10.2020 22:26

Пошаговое объяснение:

===========


Найти определённый интеграл ​
ПОКАЗАТЬ ОТВЕТЫ
Bироника Bироника  09.10.2020 22:26

Пошаговое объяснение:

Есть готовый интеграл

\int \frac{dx}{x\sqrt{x+a} } } = \frac{1}{\sqrt{a} }*ln|\frac{\sqrt{x+a} -\sqrt{a} }{\sqrt{x+a}+\sqrt{a}} |+C

Сразу скажу: как это доказать, я не знаю.ln|\frac{\sqrt{x+1} -1 }{\sqrt{x+1}+1}|(3; 15)=ln|\frac{\sqrt{15+1} -1 }{\sqrt{15+1}+1}|-ln|\frac{\sqrt{3+1} -1 }{\sqrt{3+1}+1}|=ln|\frac{4-1}{4+1} |-ln|\frac{2 -1 }{2+1}|=\\ \\ =ln|\frac{3}{5} |-ln|\frac{1}{3} |=ln(3)-ln(5)+ln(3)=2ln(3)-ln(5)=ln\frac{9}{5}

У нас а = 1, получается:

\int \frac{dx}{x\sqrt{x+1} } } = \frac{1}{\sqrt{1} }*ln |\frac{\sqrt{x+1} -\sqrt{1} }{\sqrt{x+1}+\sqrt{1}}|=ln|\frac{\sqrt{x+1} -1 }{\sqrt{x+1}+1}|+C

Подставляем пределы интегрирования

ln|\frac{\sqrt{x+1} -1 }{\sqrt{x+1}+1}|(3; 15) = ln|\frac{\sqrt{15+1} -1 }{\sqrt{15+1}+1}|-ln|\frac{\sqrt{3+1} -1 }{\sqrt{3+1}+1}|=ln|\frac{4-1}{4+1} |-ln|\frac{2-1}{2+1} |=\\= ln|\frac{3}{5} |-ln|\frac{1}{3} |=ln3-ln5+ln3=2ln3-ln5=ln\frac{9}{5}

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика