Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является .
1) — общее решение соответствующего линейного однородного дифференциального уравнения:
Применим метод Эйлера: сделаем замену где — некоторая постоянная. Тогда
Получили характеристическое уравнение:
Разделим обе части уравнения на :
Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:
Тогда
Воспользуемся формулой Эйлера:
Фундаментальная система решений: — функции линейно независимые, поскольку
Общее решение:
2) — частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции .
Здесь , причем , поэтому частное решение имеет вид , где — неизвестный коэффициент, который нужно найти.
Тогда и подставим в исходное ЛНДР и найдем :
Разделим обе части уравнения на
Таким образом, частное решение:
Тогда общим решением исходного ЛНДР с постоянными коэффициентами:
Имеем линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами, общим решением которого является
.
1)
— общее решение соответствующего линейного однородного дифференциального уравнения:
Применим метод Эйлера: сделаем замену
где
— некоторая постоянная. Тогда 
Получили характеристическое уравнение:
Разделим обе части уравнения на
:
Отрицательный дискриминант означает, что корни данного уравнения будут комплексно-сопряженными:
Тогда
Воспользуемся формулой Эйлера:
Фундаментальная система решений:
— функции линейно независимые, поскольку 
Общее решение:
2)
— частное решение линейного неоднородного дифференциального уравнения, которое находится с метода подбора вида частного решения по виду правой части функции
.
Здесь
, причем
, поэтому частное решение имеет вид
, где
— неизвестный коэффициент, который нужно найти.
Тогда
и
подставим в исходное ЛНДР и найдем
:
Разделим обе части уравнения на
Таким образом, частное решение:
Тогда общим решением исходного ЛНДР с постоянными коэффициентами:
ответ: