Поскольку x = 0 не является решением данного дифференциального уравнения, то поделим обе части уравнения на , получаем
В левой части уравнения это ни что иное как формула производной частного, то есть :
Подсчитаем отдельный интеграл по частям.
2)
Это линейное однородное дифференциальное с постоянными коэффициентами. Замена , перейдём к характеристическому уравнению: , корни которого и . Тогда общее решение диф. уравнения: и его первая производная .
Осталось найти константы C₁ и C₂ , подставляя начальные условия.
1)
Поскольку x = 0 не является решением данного дифференциального уравнения, то поделим обе части уравнения на , получаем
В левой части уравнения это ни что иное как формула производной частного, то есть :
Подсчитаем отдельный интеграл по частям.
2)
Это линейное однородное дифференциальное с постоянными коэффициентами. Замена , перейдём к характеристическому уравнению: , корни которого и . Тогда общее решение диф. уравнения: и его первая производная .
Осталось найти константы C₁ и C₂ , подставляя начальные условия.
— частное решение.