Найти интервалы монотонности и точки экстремума функции у=х^3-6х^2+5

Vsevolod20141 Vsevolod20141    3   01.07.2020 22:02    1

Ответы
mari523 mari523  15.10.2020 15:09

Пошаговое объяснение:

f(x)=х³-6х²+5

точки экстремума определяются по первой производной

f'(x)(x₀) = 0 - это необходимое условие экстремума функции

получим промежутки монотонности

если на промежутке f′(x)<0, то на этом промежутке функция убывает;

если на промежутке f′(x)>0, то на этом промежутке функция возрастает.

Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.

решение

f'(x)=(х³)'-6(х²)' +5 = 3x² -12x +0

3x² -12x = 0; 3x(x - 4) =0; x₁ = 0; x₂= 4 - это и есть точки экстремума

промежутки монотонности функции

(-∞ ;0) (0; 4) (4; +∞)

теперь на каждом промежутке определим знак производной. для этого возьмем любую точку возле точки экстремума, принадлежащую промежутку, и посмотрим на знак производной в этой точке

(-∞ ;0) х = -1; f'(-1) = 15 > 0, функция возрастает

(0; 4)  x = 1;  f'(1) = -9 <0, функция убывает

(4; +∞)  x = 5 f'(5) = 12> 0, функция возрастает

вот, в общем-то, и все.

можно дополнительно сказать, что

в окрестности точки x = 0 производная функции меняет знак с (+) на (-), значит, точка x = 0 - точка максимума.

в окрестности точки x = 4 производная функции меняет знак с (-) на (+), значит, точка x = 4 - точка минимума.

ПОКАЗАТЬ ОТВЕТЫ