Найти интегралы . 1) ∫ (4-3 cos x) dx ; 2) ∫ cos 4x dx ; 3) ∫ cos (x/6) dx ; 4) ∫ cos (2-3x) dx ; 5) ∫ x 2- в квадрате cos x 3- в кубе dx .

МашаФёдорова МашаФёдорова    2   27.08.2019 10:30    0

Ответы
brain09 brain09  09.09.2020 09:20
1.∫(4-3cosx)dx=4x-3sinx+C
2.∫cos4xdx=1/4∫cosudu=sinu/4+C=1/4*sin(4x)+C
u=4x
du=4dx
3.∫cos(x/6)dx=6∫cosudu=6sinu+C=6sin(x/6)+C
u=x/6
du=1/6*dx
4.∫cos(2-3x)dx=-1/3∫cosudu=-sinu/3+C=-1/3*sin(2-3x)+C
u=2-3x
du=-3dx
5.∫x²cosx³dx=1/2∫x²cosx(cos2x+1)dx=1/2∫(x²cosx+x²cosxcos2x)dx=1/2∫x²cosxcos2xdx+1/2∫x²cosxdx=1/4∫x²(cosx+cos3x)dx+1/2∫x²cosxdx=1/4∫(x²cosx+x²cos3x)dx+1/2∫x²cosxdx=1/4∫x²cos3xdx+3/4∫x²cosxdx=1/12*x²*sin3x-1/6∫xsin3xdx+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-1/18∫cos3xdx+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-1/54∫cosudu+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4∫x²cosxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4*x²sinx-3/2∫xsinxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4*x²sinx+3/2xcosx-3/2∫cosxdx=1/18*x*cos3x+1/12*x²*sin3x-sinu/54+3/4*x²sinx+3/2*xcosx-3sinx/2+C=3/4*x²sinx+1/12*x²*sin3x-3sinx/2-1/54*sin3x+3/2*x*cosx+1/18*x*cos3x+C
u=3x
du=3dx
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика