Найти интеграл s (1 + 1/4х)^2 хdx, найти интеграл s е^х (е^х +1)^4 dx, найти интеграл s cos^3 4xdx , вычислить s (внизу 0 наверху 2) dx/ (2+1)^2

жироввадим жироввадим    1   22.05.2019 13:00    0

Ответы
TITANIKбро TITANIKбро  17.06.2020 23:51

S(1+ 1/4х)^2 хdx=S(1+(1/2)x+(1/16)*x^2)xdx =S(x+(1/2)x^2+(1/16)*x^3)dx =(1/2)x^2+

+(1/6)x^3+(1/64)*x^4 +C

 

S е^х (е^х +1)^4 dx = S(e^x+1)^4(de^x+1) = (1/5)(e^x+1)^5+C

 

S cos^3 4xdx = S(cos^2(4x)*cos4x )dx = (1/4)S(1-sin^2(4x))cos4xd(4x)=

=(1/4)S(1-sin^2(4x)dsin4x= (1/4)*(sin4x-(1/3)sin^3(4x))+C

  

S (внизу 0 наверху 2) dx/ (2+1)^2 = S(от0 до 2)(1/3^2)dx =(1/9)S(от0до2)dx=(1/9)x Iот0 до 2I=

  (1/9)*(2-0) =2/9

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика