Найти экстремум заданной функции z=y^2+2xy-4x-2y-3

ekaterinaring2017 ekaterinaring2017    2   27.08.2019 10:00    0

Ответы
DEGoP DEGoP  03.08.2020 09:35
\small \\z=y^2+2xy-4x-2y-3\\ z'_x=2y-4\\ z'_y=2y+2x-2\\ \begin{cases} 2(y-2)=0\\ 2(y+x-1)=0 \end{cases} \begin{cases} y=2\\ y+x-1=0 \end{cases} \begin{cases} y=2\\ x=-1 \end{cases}\\ M(-1;2):\\ z''_x=0\\ z''_y=2\\ z''_{xy}=z''_{yx}=2\\ H=\begin{pmatrix} 0 & 2\\ 2 & 2 \end{pmatrix}\\ \triangle_1=0\\ \triangle_2=-4\\\\Глобальных экстремумов нет
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика