Найти двойным интегрированием центр масс однородной плоской фигуры, ограниченной замкнутой линией

Eg0rMirn9y Eg0rMirn9y    1   05.08.2019 14:10    1

Ответы
Natusya09123 Natusya09123  03.10.2020 23:30
найти двойным интегрированием центр масс однородной плоской фигуры, ограниченной замкнутой линией

Вспомним как находятся координаты точки центра масс:

x_0= \frac{ \int\limits \int\limits{x} dxdy }{S}

y_0= \frac{ \int\limits \int\limits {y}dx dy }{S}

Где S- площадь фигуры

Построим график функции : y=+/- \sqrt{x^2-x^4}
(смотри приложение к решению)

Найдем нули функции: y=0 при х=0, х=1, х=-1
Нас интересует только та часть графика где х≥0

Итак, найдем площадь фигуры. где 0≤х≤1

\int\limits^1_0 dx( \int\limits^{x \sqrt{1-x^2}}_{-x \sqrt{1-x^2}} dy)= \int\limits^1_0 dx(x \sqrt{1-x^2-(-x \sqrt{1-x^2}) })=

= \int\limits^1_0 {2x \sqrt{1-x^2}} \, dx =2 \int\limits^1_0 {x \sqrt{1-x^2} } \, dx=

сделаем замену: 1-x^2=t

-2xdx=dt

xdx=-dt/2 при этом границы интегрирования поменяются местами. 

=2 \int\limits^0_1 {- \frac{1}{2} \sqrt{t} \, dt=- \int\limits^0_1 { \sqrt{t}} \, dt= \int\limits^1_0 { \sqrt{t}} \, dt = \frac{2}{3}t^{3/2}|_0^1= \frac{2}{3}

Итак площадь фигуры 2/3

Найдем ординату:

\int\limits \int\limits {x}dxdy= \int\limits^1_0 {x}dx \int\limits^{x \sqrt{1-x^2}}_{-x \sqrt{1-x^2}} dy= \int\limits^1_0 {x(x \sqrt{1-x^2}+x \sqrt{1-x^2}}) \, dx=

=2 \int\limits^1_0 {x^2 \sqrt{1-x^2} } \, dx=

сделаем замену:

x=Sint 

dx=Costdt 

1-x^2=Cos^2t

Границы  интегрирования 0≤t≤π/2

=2 \int\limits^{ \pi /2}_0 {Sin^2tCost \sqrt{Cos^2t}} \, dt =2 \int\limits^{ \pi /2}_0 {(Sin^2tCos^2t}) \, dt=

=2 \int\limits^{ \pi /2}_0 { \frac{1}{4}Sin^22t} \, dt= \frac{1}{2} \int\limits^{ \pi /2}_0 {Sin^22t} \, dt=

сделаем еще раз замену:

2t=a

2dt=da

границы интегрирования 0≤a≤π

= \frac{1}{2} \int\limits^ \pi _0 { \frac{1}{2}Sin^2a} \, da= \frac{1}{4} \int\limits^ \pi _0 { \frac{1-Cos2a}{2}} \, da= \frac{1}{8} \int\limits^ \pi _0 {1-Cos^a} \, da=

= \frac{1}{8}( \int\limits^ \pi _0 da- \int\limits^ \pi _0 {Cos2a} \, da=

и последняя замена: 2a=s; 2da=ds

= \frac{1}{8} \int\limits^ \pi _0 {da} - \frac{1}{8} \int\limits^{2 \pi} _0 \frac{1}{2} {Cos s} ds= \frac{1}{8}a|_0^{ \pi } - \frac{1}{16}Sin s|_0^{2 \pi }=

= \frac{1}{8}( \pi -0)- \frac{1}{16}(Sin {2 \pi }-Sin 0)= \frac{1}{8} \pi

Таким образом ордината точки: 

x_0= \frac{ \pi }{8}: \frac{2}{3}= \frac{3 \pi }{16}

Найдем абсциссу, т. е. y₀

\int\limits \int\limits{y}dxdy= \int\limits^1_0 {dx} \int\limits^{x \sqrt{1-x^2} }_{-x \sqrt{1-x^2}} ydy= \int\limits^1_0 dx \frac{y^2}{2}|_{-x \sqrt{1-x^2} }^{x \sqrt{1-x^2} }=

= \frac{1}{2} \int\limits^1_0 {(x^2-x^4)-(x^2-x^4)}\, dx=0

Таким образом абсцисса точки: 

y_0=0: \frac{2}{3}=0

центр масс ( \frac{3 \pi }{16};0)

 

Найти двойным интегрированием центр масс однородной плоской фигуры, ограниченной замкнутой линией
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика