Задача 1. Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?
Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя найдем толщину одного листа бумаги:
3,3:300 или х:500.
Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание: пропорция — это равенство двух отношений):
3,3:300=х:500. Неизвестный средний член пропорции равен произведению крайних членов пропорции, деленному на известный средний член. (Подробно о пропорции и нахождению ее крайнего, среднего членов читайте в статье: «6.1.1. Пропорция. Основное свойство пропорции.»)
х=(3,3·500):300;
х=5,5. ответ: пачка 500 листов бумаги имеет толщину 5,5 см.
Это классическое рассуждение и оформление решения задачи. Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:
или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.
Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.
Задача 2. Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?
Решение.
Вся масса арбуза (5 кг) составляет 100%. Вода составит х кг или 98%. Двумя можно найти, сколько кг приходится на 1% массы.
5:100 или х:98. Получаем пропорцию:
5:100 = х:98.
х=(5·98):100;
х=4,9 ответ: в 5кг арбуза содержится 4,9 кг воды.
Задача 3. Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?
Решение.
Пусть масса 35 литров нефти составляет х кг. Тогда двумя можно найти массу 1 литра нефти:
16,8:21 или х:35. Получаем пропорцию:
16,8:21=х:35.
Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35) и делим на известный средний член (21). Сократим дробь на 7.
Умножаем числитель и знаменатель дроби на 10, чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5 (5 и 10) и на 3 (168 и 3).
ответ: 35 литров нефти имеют массу 28 кг.
Задача 4. После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?
Решение.
Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя выразим 1% площади поля. Это:
х:100 или 9:18. Составляем пропорцию:
х:100 = 9:18.
Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9) и делим на известный крайний член (18). Сокращаем дробь.
Задача 1. Толщина 300 листов бумаги для принтера составляет 3, 3 см. Какую толщину будет иметь пачка из 500 листов такой же бумаги?
Решение. Пусть х см — толщина пачки бумаги из 500 листов. Двумя найдем толщину одного листа бумаги:
3,3:300 или х:500.
Так как листы бумаги одинаковые, то эти два отношения равны между собой. Получаем пропорцию (напоминание: пропорция — это равенство двух отношений):
3,3:300=х:500. Неизвестный средний член пропорции равен произведению крайних членов пропорции, деленному на известный средний член. (Подробно о пропорции и нахождению ее крайнего, среднего членов читайте в статье: «6.1.1. Пропорция. Основное свойство пропорции.»)
х=(3,3·500):300;
х=5,5. ответ: пачка 500 листов бумаги имеет толщину 5,5 см.
Это классическое рассуждение и оформление решения задачи. Такие задачи часто включают в тестовые задания для выпускников, которые обычно записывают решение в таком виде:
или решают устно, рассуждая так: если 300 листов имеют толщину 3,3 см, то 100 листов имеют толщину в 3 раза меньшую. Делим 3,3 на 3, получаем 1,1 см. Это толщина 100 листовой пачки бумаги. Следовательно, 500 листов будут иметь толщину в 5 раз большую, поэтому, 1,1 см умножаем на 5 и получаем ответ: 5,5 см.
Разумеется, это оправдано, так как время тестирования выпускников и абитуриентов ограничено. Однако, на этом занятии мы будем рассуждать и записывать решение так, как положено это делать в 6 классе.
Задача 2. Сколько воды содержится в 5 кг арбуза, если известно, что арбуз состоит на 98% из воды?
Решение.
Вся масса арбуза (5 кг) составляет 100%. Вода составит х кг или 98%. Двумя можно найти, сколько кг приходится на 1% массы.
5:100 или х:98. Получаем пропорцию:
5:100 = х:98.
х=(5·98):100;
х=4,9 ответ: в 5кг арбуза содержится 4,9 кг воды.
Задача 3. Масса 21 литра нефти составляет 16,8 кг. Какова масса 35 литров нефти?
Решение.
Пусть масса 35 литров нефти составляет х кг. Тогда двумя можно найти массу 1 литра нефти:
16,8:21 или х:35. Получаем пропорцию:
16,8:21=х:35.
Находим средний член пропорции. Для этого перемножаем крайние члены пропорции (16,8 и 35) и делим на известный средний член (21). Сократим дробь на 7.
Умножаем числитель и знаменатель дроби на 10, чтобы в числителе и знаменателе были только натуральные числа. Сокращаем дробь на 5 (5 и 10) и на 3 (168 и 3).
ответ: 35 литров нефти имеют массу 28 кг.
Задача 4. После того, как было вспахано 82% всего поля, осталось вспахать еще 9 га. Какова площадь всего поля?
Решение.
Пусть площадь всего поля х га, что составляет 100%. Осталось вспахать 9 га, что составляет 100% — 82% = 18% всего поля. Двумя выразим 1% площади поля. Это:
х:100 или 9:18. Составляем пропорцию:
х:100 = 9:18.
Находим неизвестный крайний член пропорции. Для этого перемножаем средние члены пропорции (100 и 9) и делим на известный крайний член (18). Сокращаем дробь.
ответ: площадь всего поля 50 га.