Найдите площадь полной поверхности прямой трехгольной призмы, в основании которой лежит прямоугольный треугольник с катетом 6 см и гипотенузой 10 см, если высота призмы равна 5 см.

kozubyaka kozubyaka    3   08.07.2019 23:40    1

Ответы
denmalyshevs denmalyshevs  16.09.2020 19:57
По теореме Пифагора находим второй катет в²=с²-а²=10²-6²=100-36=64, в=8см.
Периметр основания Р=а+в+с=10+6+8=24. Площадь боковой поверхности Sбок=РН=24·5=120 см². Площадь основания Sосн=1/2ав =1/2·6·8=24 см².
Sполн=Sбок+2Sосн=120+2·24=120+48=168 см².
ПОКАЗАТЬ ОТВЕТЫ
timur123123 timur123123  16.09.2020 19:57
Площадь поверхности призмы складывается из площадей всех граней – это два равных по площади основания и боковая поверхность.Для того, чтобы найти площади всех граней необходимо найти третью сторону основания призмы (еще один катет прямоугольного треугольника).По теореме Пифагора:
√10^2-6^2=√100-36=√64=8 см - это второй катет прямоугольного треугольника основания
Теперь мы можем найти площадь основания и площадь боковой поверхности. Площадь основания равна:
SΔ=1/2 *(6 * 8)=24 см²
Площадь боковой поверхности призмы с периметром основания  равна:
Sбок=5*(6+8+10)=120 см²
Полная площадь поверхности призмы:
S=2SΔ+Sбок=2*24+120=168 см²
ответ: 168 см²
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика