Найдите первый член прогрессии, если третий член равен –10, а его квадрат в сумме с седьмым членом дает утроенный пятый член

lol1027 lol1027    2   26.09.2019 20:50    1

Ответы
Лизка250515 Лизка250515  08.10.2020 21:05
Пусть знаменатель прогрессии равен q; n-ый член равен b_{n}
b_{1}q^{2}=b_{3}=-10
По условию 100+b_{1}q^{6}=3b_{1}q^{4}= \frac{300}{b_{1}} \Leftrightarrow 100b_{1}+b_{1}^{2}q^{6}=300 (1)

При этом 
(b_{1}q^{2})^{3}=b_{1}^{3}q^{6}=(-10)^{3}=-1000 \Leftrightarrow b_{1}^{2}q^{6}= \frac{-1000}{b_{1}}

Подставим это в (1): 
100b_{1}-\frac{1000}{b_{1}} =300 \Leftrightarrow b_{1}=-2;b_{1}=5
Но третий член отрицательный. Значит и первый член отрицателен. Следовательно b_{1}=-2
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика