Найдите наименьшее значение функции f(x)=4/(x-1) + x на промежутке [-2;0]

kris334334kris334334 kris334334kris334334    2   25.08.2020 10:04    0

Ответы
ilmir123456789 ilmir123456789  15.10.2020 16:15

f(x) = \frac{4}{x-1} +x

f'(x) = -\frac{4}{(x-1)^{2} } * 1 + 1=1-\frac{4}{(x-1)^{2} }

Найдем экстремумы функции  (f'(x) = 0)  :

1-\frac{4}{(x-1)^{2} }=0

\frac{4}{(x-1)^{2} } = 1

(x-1)^{2} = 4

[ x - 1 = 2     =>      x = 3  - не входит в промежуток [-2 ; 0]

[ x - 1 = -2    =>      x = -1

---------------------------------

f(-2) = \frac{4}{-2-1} -2= -\frac{4}{3} -2=-\frac{10}{3}=-3\frac{1}{3}

f(-1) = \frac{4}{-1-1} -1= -\frac{4}{2} -1=-2-1= -3

f(0) = \frac{4}{0-1} +0 = -\frac{4}{1} =-4 - min

ответ : -4

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика