Найдите наименьшее натуральное число n , для которого а)n! делится на 2016; б)n! делится на 2016 в 10 степени .(напомним , что n! =1*2*3**n )

urmanovae1983 urmanovae1983    3   15.08.2019 11:10    0

Ответы
Tbdtbd Tbdtbd  04.10.2020 20:57
2016 = 4*4*2*63 = 2^5*3^2*7
Наименьшее будет, когда мы пройдем 7, два раза по 3 и 5 раз по 2.
7 - это 1 раз по 7.
3, 6 - это 2 раза по 3.
2, 4, 6, 8 - это 7 раз по 2.
ответ: n = 8, 8! = 40320 = 20*2016
2016^10 = 2^50*3^20*7^10
Наименьшее n будет, когда мы пройдем 10 раз число 7, 20 раз число 3
и 50 раз число 2.
7, 14, 21, 28, 35, 42, 49, 56, 63 - это 10 раз по 7 (49 - это 2 раза по 7).
3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45 - это 20 раз по 3.
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,
42, 44, 46, 48, 50, 52, 54, 56 - это 51 раз по 2.
Наибольшее из 63, 45 и 56 - это 63.
ответ: n = 63, 63! делится на 2016^10
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика