∣17−3x²∣=3x+2
3x + 2 ≥ 0
x ≥ -2/3
при других модуль неопределен
1. 17−3x² ≥ 0
x ≤ √17/3 ( - √17/3 < -2/3)
x ∈ [-2/3, √17/3 ] (√17/3 ≈ 2.38)
∣17−3x²∣ = 17−3x²
17−3x² = 3x + 2
3x² + 3x - 15 = 0
x² + x - 5 = 0
D = 1 + 20 = 21
x₁₂ = (-1 +- √21)/2 ≈ -2.79 1.79
x₁ = (-1 - √21)/2 ∉ [-2/3, √17/3 ]
x₂ = (-1 + √21)/2 ∈ [-2/3, √17/3 ]
1. 17−3x² < 0
x > √17/3
x < -√17/3 ( - √17/3 < -2/3)
x ∈ (√17/3, +∞ ) (√17/3 ≈ 2.38)
∣17−3x²∣ = -(17−3x²)
3x² - 17 = 3x + 2
3x² - 3x - 19 = 0
D = 9 + 4*3*19 = 237
x₃₄ = (3 +- √237)/6
x₃ = (3 - √237)/6 < 0 ∉ (√17/3, +∞ )
x₄ = (3 + √237)/6 ≈ 3.06 ∈ (√17/3, +∞ )
ответ (3 + √237)/6, (-1 + √21)/2
ну и примрчики у вас {{{{{{{
Достаточно подробно? :)
∣17−3x²∣=3x+2
3x + 2 ≥ 0
x ≥ -2/3
при других модуль неопределен
1. 17−3x² ≥ 0
x ≤ √17/3 ( - √17/3 < -2/3)
x ∈ [-2/3, √17/3 ] (√17/3 ≈ 2.38)
∣17−3x²∣ = 17−3x²
17−3x² = 3x + 2
3x² + 3x - 15 = 0
x² + x - 5 = 0
D = 1 + 20 = 21
x₁₂ = (-1 +- √21)/2 ≈ -2.79 1.79
x₁ = (-1 - √21)/2 ∉ [-2/3, √17/3 ]
x₂ = (-1 + √21)/2 ∈ [-2/3, √17/3 ]
1. 17−3x² < 0
x > √17/3
x < -√17/3 ( - √17/3 < -2/3)
x ∈ (√17/3, +∞ ) (√17/3 ≈ 2.38)
∣17−3x²∣ = -(17−3x²)
3x² - 17 = 3x + 2
3x² - 3x - 19 = 0
D = 9 + 4*3*19 = 237
x₃₄ = (3 +- √237)/6
x₃ = (3 - √237)/6 < 0 ∉ (√17/3, +∞ )
x₄ = (3 + √237)/6 ≈ 3.06 ∈ (√17/3, +∞ )
ответ (3 + √237)/6, (-1 + √21)/2
ну и примрчики у вас {{{{{{{
Достаточно подробно? :)