Найдите какое нибудь число больше 100 которое при делении на 2 на 3 на 5 даёт в остатке 1

Messi1444 Messi1444    1   18.06.2019 21:30    11

Ответы
Greninja Greninja  02.10.2020 04:58

Например, это могут быть числа: 121; 151.

Пошаговое объяснение:

Требуется найти число больше 100, которое при делении на 2, на 3, на 5 дает в остатке 1.

Найдем наименьшее общее кратное чисел 2, 3, 5.

Так как это простые числа, т.е. они делятся только на 1 и на самих себя, то НОК (2,3,5) = 2*3*5 = 30.

Тогда все числа вида 30n делятся на 2, на 3 и на 5 без остатка, а все числа вида 30n + 1 при делении на 2, на 3, на 5 дадут в остатке 1, где n ∈ Z (n - целое число).

По условию число должно быть больше 100:

30n + 1 > 100;   30n > 99;   n >3,3.

⇒ все числа вида 30n + 1 , n ∈ Z, n ≥ 4 при делении на 2, на 3, на 5 дадут в остатке 1 и будут больше 100.

Например:

n = 4,  4 * 30 + 1 = 121

121 : 2 = 60 (ост. 1)

121 : 3 = 40 (ост. 1)

121 : 5 = 24 (ост. 1).

Или

n = 5, 30 * 5 + 1 = 151

151 : 2 = 75 (ост. 1 )

151 : 3 = 50 (ост. 1 )

151 : 5 = 30 (ост. 1 ).

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика