Пошаговое объяснение:
Длина полной окружности 2πR
Градусная мера полной окружности, следовательно, 2π = 360°, а π = 180°
Тогда: 1) \frac{5*180}{36}= 25
36
5∗180
=25 °
2) \frac{7*180}{12}= 105
12
7∗180
=105 °
3) \frac{11*180}{18}=110
18
11∗180
=110 °
4) \frac{5*180}{9} =100
9
=100 °
5) \frac{11*180}{20}=99
20
=99 °
6) \frac{13*180}{30}=78
30
13∗180
=78 °
7) \frac{11*180}{6}=330
6
=330 °
8) \frac{4*180}{3}=240
3
4∗180
=240
Пошаговое объяснение:
Длина полной окружности 2πR
Градусная мера полной окружности, следовательно, 2π = 360°, а π = 180°
Тогда: 1) \frac{5*180}{36}= 25
36
5∗180
=25 °
2) \frac{7*180}{12}= 105
12
7∗180
=105 °
3) \frac{11*180}{18}=110
18
11∗180
=110 °
4) \frac{5*180}{9} =100
9
5∗180
=100 °
5) \frac{11*180}{20}=99
20
11∗180
=99 °
6) \frac{13*180}{30}=78
30
13∗180
=78 °
7) \frac{11*180}{6}=330
6
11∗180
=330 °
8) \frac{4*180}{3}=240
3
4∗180
=240