Уравнение касательной y=f'(x₀)*(x-x₀)+f(x₀) f'(x₀) - значение производной функции в точке х₀, f(x₀) - значение функции в точке х₀. Так как в условии говорится о точке пересечения с осью ординат, то х₀=0 Находим производную f'(x)=(x^2-2x+3)'=2x-2 Значение производной в точке х₀=0 f'(0)=2*0-2=-2 Значение функции в точке х₀=0 f(0)=0-2*0+3=3 Подставляем в уравнение касательной у=-2(х-0)+3 у=-2х+3 это и есть уравнение касательной
y=f'(x₀)*(x-x₀)+f(x₀)
f'(x₀) - значение производной функции в точке х₀, f(x₀) - значение функции в точке х₀.
Так как в условии говорится о точке пересечения с осью ординат, то х₀=0
Находим производную
f'(x)=(x^2-2x+3)'=2x-2
Значение производной в точке х₀=0
f'(0)=2*0-2=-2
Значение функции в точке х₀=0
f(0)=0-2*0+3=3
Подставляем в уравнение касательной
у=-2(х-0)+3
у=-2х+3 это и есть уравнение касательной