Написать уравнение касательной к графику функции f(x)=x^3-1 в точке с абсциссой x0=-1, x0=2

abdulkhanaknie abdulkhanaknie    1   14.09.2019 22:20    0

Ответы
maxim199431 maxim199431  07.10.2020 15:22
Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = -1, тогда y0 = -2
Теперь найдем производную:
1)  y' = (x3-1)' = 3x2
следовательно:
f'(-1) = 3 (-1)2 = 3
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = -2 + 3(x +1)
или
yk = 1+3x
2)  Запишем уравнения касательной в общем виде:
yk = y0 + y'(x0)(x - x0)
По условию задачи x0 = 2, тогда y0 = 7
Теперь найдем производную:
y' = (x3-1)' = 3x2
следовательно:
f'(2) = 3 22 = 12
В результате имеем:
yk = y0 + y'(x0)(x - x0)
yk = 7 + 12(x - 2)
или
yk = -17+12x
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика