Приближенные вычисленияможно рассматривать как одно изпримененийпроизводной, а конкретно касательной данной функции. С приближениями мы встречаемся довольно часто, например, если нужно какие-то значения числа , то пишем , и т. д.
Рассмотрим общий прием получения с хорошей точностью приближенных значений. Предположим, что задана функция и эта функция имеет сложный график. Достаточно задать точку , для того чтобы получить касательную. Проведем в точке касательную. Запишем уравнение этой касательной . В окрестности точки график касательной и график данной функции почти не отличаются (см. рис.1). Предположим, что приращение аргумента невелико. Имеем - точное значение функции в точке . Приближенное значение дает касательная, и если невелико, то , то есть значение функции в новой точке мало отличается от значения линейной функции (касательной).
Приближенные вычисленияможно рассматривать как одно изпримененийпроизводной, а конкретно касательной данной функции. С приближениями мы встречаемся довольно часто, например, если нужно какие-то значения числа , то пишем , и т. д.
Рассмотрим общий прием получения с хорошей точностью приближенных значений. Предположим, что задана функция и эта функция имеет сложный график. Достаточно задать точку , для того чтобы получить касательную. Проведем в точке касательную. Запишем уравнение этой касательной . В окрестности точки график касательной и график данной функции почти не отличаются (см. рис.1). Предположим, что приращение аргумента невелико. Имеем - точное значение функции в точке . Приближенное значение дает касательная, и если невелико, то , то есть значение функции в новой точке мало отличается от значения линейной функции (касательной).