На загадочном калькуляторе есть волшебная кнопка при нажатии которой к числу на экране прибавляется его сумма цифр сначала на экране было число 96 а затем много раз нажимали волшебную кнопку могла ли при этом в какой-то момент на экране появится число 9333? запишите решение и ответ

ffjuee ffjuee    2   25.08.2019 14:40    3

Ответы
HIppen HIppen  05.10.2020 18:59
Нет.

Полезное утверждение: сумма цифр даёт такой же остаток при делении на 9, что и само число.
Доказательство. Пусть число имеет вид \overline{\dots a_2a_1a_0}=10^0a_0+10^1a_1+10^2a_2+\dots. Рассмотрим разность между этим числом и суммой его цифр: 
\overline{\dots a_2a_1a_0}-(a_0+a_1+a_2+\dots)=(10^0-1)a_0+(10^1-1)a_1+\\+(10^2-1)a_2+\dots=9a_1+99a_2+999a_3+\dots
Коэффициент перед a_k равен 10^k-1 - k девяток, очевидно делится на 9. 
Если разность двух целых чисел делится на 9, то они дают одинаковые остатки при делении на 9, что и требовалось доказать.

__________________________________________

Возвращаемся к задаче. Первоначальное число давало остаток 6 при делении на 9. Тогда после первого нажатия волшебной кнопки на экране будет число, дающее такой же остаток от деления на 9, что и 2 * 6, после следующего - как и 4 * 6, и вообще, после n нажатий число будет давать такой же остаток, что и 2^n\cdot62^n \cdot 6 не делится на 9 ни при каком n, так что на экране не появится ни одного числа, делящегося на 9, в том числе и 9333 = 9 * 1037.
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика