На языке! an infinite geometric series has a common ratio, r. the first term of the series is 10 and the sum to infinity is 50. (a) show that the common ratio is 4/5 (b) find the second term of the series (c) the first and second terms of the geometric series in part (a) have the same values as the 4th and 8th terms respectively, in an arithmetic series. find the common difference of the arithmetic series.

karrr123 karrr123    3   27.09.2019 01:20    0

Ответы
batrazmargit batrazmargit  08.10.2020 21:33

b₁=10 S=50 q<|1|

a) доказать, что q=4/5.

S=b₁/(1-q)=50

10/(1-q)=50

50*(1-q)=10

50-50q=10

50q=40 |÷50

q=4/5.

b) найти второй член прогрессии:

b₂=b₁*q=10*4/5=8.

b₂=8.

с)

a₄=10     a₁+3d=10

a₈=8       a₁+7d=8

Вычитаем из второго уравнения первое:

4d=-2   |÷4

d=-0,5.

ПОКАЗАТЬ ОТВЕТЫ
stalker2000008 stalker2000008  08.10.2020 21:33

Решение во вложении.


На языке! an infinite geometric series has a common ratio, r. the first term of the series is 10 and
ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика