на субботник по уборке школьной территории пришло 60 учеников. среди любых 10-и школьников найдётся 3 одноклассника. из скольки разных классов могли придти школьники на этот субботник? УМОЛЯЮ
класс по 1 школьнику, осталось распределить 60 - (N + K) школьников по N классам. В наибольший по размеру класс попадёт не меньше. чем (60 - (N + K))/N учеников (вновь докажем от противного, если в любой класс попало меньше, чем это число, то всех попадет меньше, чем 60 - (N + K). Противоречие).
Нужно найти минимальный возможный размер группы самого большого по представительству класса. По написанному выше размер группы не меньше, чем
Поскольку размер группы - натуральное число, то размер максимальной группы не может быть меньше 15. Равенство достигается, если, например, есть 4 класса, из каждого из которых поехали ровно 15 учеников.
ответ 15
Пошаговое объяснение:
класс по 1 школьнику, осталось распределить 60 - (N + K) школьников по N классам. В наибольший по размеру класс попадёт не меньше. чем (60 - (N + K))/N учеников (вновь докажем от противного, если в любой класс попало меньше, чем это число, то всех попадет меньше, чем 60 - (N + K). Противоречие).
Нужно найти минимальный возможный размер группы самого большого по представительству класса. По написанному выше размер группы не меньше, чем
1 + (60 - (N + K))/N >= 1 + (60 - (N + 9 - 2N))/N = 1 + (51 + N)/N = 2 + 51/N >= 2 + 51/4 = 14.75
Поскольку размер группы - натуральное число, то размер максимальной группы не может быть меньше 15. Равенство достигается, если, например, есть 4 класса, из каждого из которых поехали ровно 15 учеников.
ответ. 15.