На предприятии работают несколько сотрудников, зарплата каждого составляет целое число тугриков (разные сотрудники могут иметь разную зарплату). инкассаторы на предприятие 250 монет по 1 тугрику, 250 монет по 2 тугрика, …, 250 монет по 2017 тугриков. деньги — это в точности суммарная зарплата всех сотрудников. при каком наибольшем количестве сотрудников зарплату заведомо удастся раздать (так, что каждый получит в точности причитающуюся ему сумму)?
Пусть сотрудников 101 или меньше. Упорядочим их по убыванию оставшегося размера выплаты. Будем распределять монеты так:
Заплатим первому в очереди 1 монетой максимального номинала из имеющихся, а затем поставим его в очередь согласно оставшемуся размеру выплаты.
Почему это сработает: если максимальный номинал монеты x >= 3, то осталось выплатить не меньше, чем 100*(1+2+3+...+(x-1))+x = 50x^2-49x, у первого в очереди остаток к выплате не меньше, чем (50x^2-49x)/101 >= x.
Если x = 2, то первому в очереди надо выплатить не меньше 2 тугриков, поскольку в противном случае сумма всех монет была бы не больше 101 (не более 101 человека, каждому надо выплатить не более 1 тугрика), но сумма всех монет не меньше, чем 100*1 + 2 = 102.
Если x = 1, то очевидно, выплатить получится.