На доске написано 600 последовательных чисел (среди них могут быть отрицательные ). назовём число хорошим , если сумма остальных 599 чисел ( кроме него ) является квадратом целого числа . какое наибольшее количество хороших чисел может быть среди 600 чисел на доске ?
Остается доказать, что большего количество хороших чисел быть не может. Для этого обратим внимание на то, что при сдвиге нашего массива чисел вправо на 1 все получающиеся суммы увеличиваются на 399. Теперь они будут принимать значения от 399 до 798. Плотность квадратов среди натуральных чисел с ростом чисел уменьшается (расстояние между ними каждый раз возрастает на 2), поэтому хороших чисел станет меньше (их там 9 штук - от 20 в квадрате до 28 в квадрате). Еще меньше квадратов мы будем получать, если массив сдвигать еще правее. В какой-то момент там вообще могут не получаться полные квадраты. Попытка сдвинуть массив не вправо, а влево вообще абсурдна, так как уже после первого сдвига все суммы станут отрицательными (ладно, уговорили, так и быть, одна сумма будет равна нулю).