Шаг 1: Определим, что такое локальная теорема Лапласа.
Локальная теорема Лапласа утверждает, что при больших значениях n (количество испытаний) и близких значениях p (вероятность успеха в одном испытании) биномиальное распределение можно приближенно описать нормальным распределением.
Шаг 2: Зададимся значениями для нашей задачи.
В данной задаче у нас n = 40 (количество подбрасываний монеты) и p = 0.5 (вероятность выпадения герба в одном подбрасывании).
Шаг 3: Перейдем к подсчету вероятности с использованием локальной теоремы Лапласа.
Для нашей задачи мы хотим найти вероятность того, что герб выпадет в 25 случаях, то есть P(X = 25).
По локальной теореме Лапласа, мы можем использовать нормальное распределение для приближенного определения этой вероятности. Для этого нам понадобится вычислить среднее значение и стандартное отклонение нормального распределения.
Среднее значение (математическое ожидание) для биномиального распределения можно рассчитать как M = n * p. В нашем случае, M = 40 * 0.5 = 20.
Стандартное отклонение для биномиального распределения можно рассчитать как SD = sqrt(n * p * (1 - p)). В нашем случае, SD = sqrt(40 * 0.5 * (1 - 0.5)) = sqrt(10) ≈ 3.16.
Теперь, используя приближение нормальным распределением, мы можем вычислить вероятность с помощью таблицы стандартного нормального распределения или с использованием калькулятора.
Шаг 4: Используем таблицу стандартного нормального распределения или калькулятор.
Для вычисления вероятности P(X = 25), мы должны найти соответствующее значение в таблице стандартного нормального распределения или использовать калькулятор.
Зная среднее значение и стандартное отклонение нормального распределения, мы можем найти значение Z-статистики с помощью формулы Z = (X - M) / SD, где X - количество выпадений герба, M - среднее значение, SD - стандартное отклонение.
Затем мы находим соответствующее значение вероятности P из таблицы или калькулятора.
Шаг 5: Определяем итоговый ответ.
Получив соответствующее значение вероятности P(X = 25) из таблицы или калькулятора, мы можем сделать окончательное заключение о вероятности выпадения герба в 25 случаях при 40 подбрасываниях монеты.
Например, если полученное значение вероятности составляет 0.03, то вероятность того, что герб выпадет ровно 25 раз из 40 подбрасываний, составляет 3%.
В результате, исходя из данных и используя локальную теорему Лапласа, мы можем вычислить приближенную вероятность выпадения герба в 25 случаях при 40 подбрасываниях монеты.
Шаг 1: Определим, что такое локальная теорема Лапласа.
Локальная теорема Лапласа утверждает, что при больших значениях n (количество испытаний) и близких значениях p (вероятность успеха в одном испытании) биномиальное распределение можно приближенно описать нормальным распределением.
Шаг 2: Зададимся значениями для нашей задачи.
В данной задаче у нас n = 40 (количество подбрасываний монеты) и p = 0.5 (вероятность выпадения герба в одном подбрасывании).
Шаг 3: Перейдем к подсчету вероятности с использованием локальной теоремы Лапласа.
Для нашей задачи мы хотим найти вероятность того, что герб выпадет в 25 случаях, то есть P(X = 25).
По локальной теореме Лапласа, мы можем использовать нормальное распределение для приближенного определения этой вероятности. Для этого нам понадобится вычислить среднее значение и стандартное отклонение нормального распределения.
Среднее значение (математическое ожидание) для биномиального распределения можно рассчитать как M = n * p. В нашем случае, M = 40 * 0.5 = 20.
Стандартное отклонение для биномиального распределения можно рассчитать как SD = sqrt(n * p * (1 - p)). В нашем случае, SD = sqrt(40 * 0.5 * (1 - 0.5)) = sqrt(10) ≈ 3.16.
Теперь, используя приближение нормальным распределением, мы можем вычислить вероятность с помощью таблицы стандартного нормального распределения или с использованием калькулятора.
Шаг 4: Используем таблицу стандартного нормального распределения или калькулятор.
Для вычисления вероятности P(X = 25), мы должны найти соответствующее значение в таблице стандартного нормального распределения или использовать калькулятор.
Зная среднее значение и стандартное отклонение нормального распределения, мы можем найти значение Z-статистики с помощью формулы Z = (X - M) / SD, где X - количество выпадений герба, M - среднее значение, SD - стандартное отклонение.
Затем мы находим соответствующее значение вероятности P из таблицы или калькулятора.
Шаг 5: Определяем итоговый ответ.
Получив соответствующее значение вероятности P(X = 25) из таблицы или калькулятора, мы можем сделать окончательное заключение о вероятности выпадения герба в 25 случаях при 40 подбрасываниях монеты.
Например, если полученное значение вероятности составляет 0.03, то вероятность того, что герб выпадет ровно 25 раз из 40 подбрасываний, составляет 3%.
В результате, исходя из данных и используя локальную теорему Лапласа, мы можем вычислить приближенную вероятность выпадения герба в 25 случаях при 40 подбрасываниях монеты.