Многогранник описан около сферы.
Назовём его грань большой, если проекция сферы на плоскость грани целиком попадает в грань.
Докажите, что больших граней не больше 6.

Dmitr55 Dmitr55    2   25.04.2020 19:35    2

Ответы
MaksymU MaksymU  25.04.2020 20:30

Пошаговое объяснение:

Пусть R — радиус шара.

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

ПОКАЗАТЬ ОТВЕТЫ
BettaPi2003 BettaPi2003  25.04.2020 20:30

Пошаговое объяснение:

Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань.

Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты .

По известной формуле площадь такой «шапочки» равна .

Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы.

Обозначив количество больших граней через n, получим , то есть .

Решение заканчивается проверкой того, что .

Примечание. Легко видеть, что у куба шесть больших граней.

Поэтому приведенная в задаче оценка числа больших граней является точной.

ПОКАЗАТЬ ОТВЕТЫ
Другие вопросы по теме Математика