Метод от шестеро преподавателей составляли это занятие и предложили 14 . докажите, что найдутся два преподавателя, которые предложили одинаковое количество .
Предположим, что все преподаватели предложили разное число задач. Наименьшее возможное число задач от преподавателя - 0. Т.к. мы предполагаем, что все предложили разное число задач, то остальные 5 преподавателей должны предложить не менее 1, 2, 3, 4 и 5 задач. Т.е. эти 5 преподавателей должны предложить 1+2+3+4+5 = 15 задач. Но по условию всего задач было предложено 14. Противоречие. Значит, исходное предположение неверно. Значит, найдутся по меньшей мере 2 преподавателя, предложившие одинаковое число задач.
Наименьшее возможное число задач от преподавателя - 0. Т.к. мы предполагаем, что все предложили разное число задач, то остальные 5 преподавателей должны предложить не менее 1, 2, 3, 4 и 5 задач. Т.е. эти 5 преподавателей должны предложить 1+2+3+4+5 = 15 задач. Но по условию всего задач было предложено 14. Противоречие.
Значит, исходное предположение неверно. Значит, найдутся по меньшей мере 2 преподавателя, предложившие одинаковое число задач.