Медианы aa1 , bb1 и сс1 треугольника авс пересекаются в точке м. точки а2, в2 и с2 - середины отрезков ма, мв и мс соответственно. а) докажите ,что площадь шестиугольника (а1 в2 с1 а2 в1 с2) вдвое меньше площади треугольника авс. б) найдите сумму квадратов всех сторон этого шестиугольника, если известно, что ав=5, вс=8 и ас=10
Если в треугольниках основания равны, а высота общая, то площади таких треугольников равны.
См. рисунок в приложении.
Δ B₁MC₂ и Δ B₁C₂C имею равные основания МС₂=С₂С и общую высоту, проведенную из точки В₁ на МС.
S (Δ B₁MC₂)=S( Δ B₁C₂C)
Аналогично
S (Δ А₁MC₂)=S( Δ А₁C₂C)
S (Δ А₁MВ₂)=S( Δ А₁В₂В)
S (Δ С₁MВ₂)=S( Δ С₁В₂В)
S (Δ С₁MА₂)=S( Δ С₁А₂А)
S (Δ B₁MА₂)=S( Δ B₁А₂А)
Складываем
S (шестиугольника А₁В₂С₁А₂В₁С₂)=
=S (Δ B₁MC₂) +S (Δ А₁MC₂)+S (Δ А₁MВ₂)+S (Δ С₁MВ₂)+
S (Δ С₁MА₂)+S (Δ B₁MА₂)=S(ΔАВС)-S(шестиугольника А₁В₂С₁А₂В₁С₂)⇒
2S(шестиугольника А₁В₂С₁А₂В₁С₂)=S(Δ ABC)⇒
S(шестиугольника А₁В₂С₁А₂В₁С₂)=S(Δ ABC)/2.
2)
По свойству средней линии треугольника
А₂В₁=А₁В₂=СС₁/3
А₂С₁=С₂А₁=ВВ₁/3
В₂С₁=С₂В₁=АА₁/3
По формуле нахождения медианы треугольника через стороны ( легко получается из формулы: сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон)
(А₂В₁)²+(А₁В₂)²+(А₂С₁)²+(С₂А₁)²+(В₂С₁)²+(С₂В₁)²=
=(СС₁/3)²+(СС₁/3)²+(ВВ₁/3)²+(ВВ₁/3)²+(АА₁/3)²+(АА₁/3)²=
=(2/9)·((СС₁)²+(ВВ₁)²+(АА₁)²)=
=(2/9)·(2а²+2b²-c² +2а²+2с²-b²+2b²+2c²-a²)/4=(2/9)·(3/4)·(a²+b²+c²)=
=(1/6)·(5²+8²+10²)=189/6=31,5